Skip to content

Change Data Capture Using Chango CDC

Chango CDC is Change Data Capture application to catch CDC data of database and send CDC data to Chango.

Build and Package Chango CDC

Embedded Debezium is used by Chango CDC. So you need to choose which Debezium version will be used for your database, see the release notice of Debezium. After that, choose the concrete maven dependency version of Debezium connector. For example, maven dependency version of Debezium connector for PostgreSQL can be found here.

Package Chango CDC distribution with Debezium maven dependency version. Please note that Java 11 and Maven 3 are required to build Chango CDC.

git clone -b branch-1.0.0 https://github.com/cloudcheflabs/chango-cdc.git
cd chango-cdc;

export CHANGO_CDC_VERSION=1.0.0
export DEBEZIUM_VERSION=1.9.7.Final

./package-dist.sh \
--version=${CHANGO_CDC_VERSION} \
--debezium.version=${DEBEZIUM_VERSION} \
;

Install Chango CDC

You may use Chango CDC package which was built for yourself previously. For this example, the pre-built Chango CDC will be used. Download Chango CDC.

curl -L -O https://github.com/cloudcheflabs/chango-cdc/releases/download/1.0.0/chango-cdc-1.0.0-debezium-1.9.7.Final-linux-x64.tar.gz

Untar and move to Chango CDC directory.

tar zxvf chango-cdc-1.0.0-debezium-1.9.7.Final-linux-x64.tar.gz
cd chango-cdc-1.0.0-debezium-1.9.7.Final-linux-x64/

Configure Chango CDC

Modify conf/configuation.yml. For example, it looks like this.

chango:
  token: eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjZGM0MTFkYzIzMzg2NjU0ZGZkYTdjYjk4OTMzNjA1NWNiNyIsImV4cCI6MTcwNjY1OTE5OSwiaWF0IjoxNzAxMzU2NDEyfQ.-WjO6mpNV5QM5t1jwLmBD8tBuRNOxrzcREU6RqLJtHGD0u_TGi28NWG9lFYA-ZKQ-nDwGbr6Nf_MXaUeeO2VAw
  dataApiUrl: http://chango-private-1.chango.private:80
  schema: cdc_db
  table: student
  batchSize: 10000
  interval: 1000

debezium:
  connector: |-
    name=postgres-connector
    connector.class=io.debezium.connector.postgresql.PostgresConnector
    offset.storage=org.apache.kafka.connect.storage.FileOffsetBackingStore
    offset.storage.file.filename=/tmp/chango-cdc/offset-student.dat
    offset.flush.interval.ms=60000
    topic.prefix=cdc
    schema.history.internal=io.debezium.storage.file.history.FileSchemaHistory
    schema.history.internal.file.filename=/tmp/chango-cdc/schemahistory-student.dat
    database.server.name=postgresql-server
    database.server.id=pg-1
    database.hostname=localhost
    database.port=5432
    database.user=anyuser
    database.password=anypassword
    database.dbname=studentdb
    table.include.list=public.student
  • chango.token: Chango Credential which is necessary to access Chango Data API. See Get Chango Credential.
  • chango.dataApiUrl: Chango Data API endpoint URL.
  • chango.schema: Schema of Iceberg catalog in Chango.
  • chango.table: Iceberg Table in Chango.

In this example, we will use PostgreSQL from which CDC data will be caught and sent to Chango.

  • debezium.connector: Properties of Debezium connector for PostgreSQL.

If you want to use another database, consult Debezium Connectors.

Install PostgreSQL

PostgreSQL will be installed as docker container.

Assumed that docker and docker compose are installed on your machine, create docker compose file.

cat <<EOF > docker-compose.yml
version: "3.5"

services:
  postgres:
    container_name: postgres
    image: debezium/postgres:9.6
    ports:
      - 5432:5432
    environment:
      - POSTGRES_DB=studentdb
      - POSTGRES_USER=anyuser
      - POSTGRES_PASSWORD=anypassword
EOF

Run docker compose.

docker-compose up -d;

And then, enter the docker container of PostgreSQL to create a table.

docker exec -it postgres sh;

Connect PostgreSQL database in it.

psql -U anyuser -d studentdb;

Create table student.

CREATE TABLE public.student
(
    id integer NOT NULL,
    address character varying(255),
    email character varying(255),
    name character varying(255),
    CONSTRAINT student_pkey PRIMARY KEY (id)
);

Create Iceberg Table

You need to create Iceberg table in Chango using trino clients like Superset.

-- create iceberg schema.
CREATE SCHEMA IF NOT EXISTS iceberg.cdc_db;


-- create iceberg table.
CREATE TABLE iceberg.cdc_db.student (
    address varchar,
    day varchar,
    email varchar,
    id bigint,
    month varchar,
    name varchar,
    op varchar,
    ts bigint,
    year varchar 
)
WITH (
    partitioning=ARRAY['year', 'month', 'day'],
    format = 'PARQUET'
);

In addition to the original fields of PostgreSQL table, fields year, month, day, ts and op are required for partitioning and small files compaction. If fields year, month, day, ts and op exist in the original PostgreSQL table, then _ will be appended to the original fields of PostgreSQL table.

Take a note that the type of field id in original PostgreSQL table is integer, but the type of field id in Iceberg table in Chango is bigint.

NOTE: The sequence of table column names in lower case must be alphanumeric in ascending order.

Run Chango CDC

Move to Chango CDC directory, and run Chango CDC.

bin/start-chango-cdc.sh

You can check the log file /tmp/chango-cdc/chango-cdc.log.

If you want to stop Chango CDC, run the following.

bin/stop-chango-cdc.sh

Run PostgreSQL CUD Queries

In PostgreSQL docker container, run the CUD queries.

INSERT INTO STUDENT(ID, NAME, ADDRESS, EMAIL) VALUES('1','Kidong Lee','Seoul','kidong@example.com');

UPDATE STUDENT SET EMAIL='kidong2@example.com', NAME='Kidong2 Lee' WHERE ID = 1; 

DELETE FROM STUDENT WHERE ID = 1;

Let's check if CDC data has been saved in Iceberg table in Chango with running the following query in Superset.

select *, from_unixtime(ts/1000) from iceberg.cdc_db.student order by ts desc;